Triple-Frequency Code-Phase Combination Determination: A Comparison with the Hatch-Melbourne-Wübbena Combination Using BDS Signals
نویسندگان
چکیده
Considering the influence of the ionosphere, troposphere, and other systematic errors on double-differenced ambiguity resolution (AR), we present an optimal triple-frequency code-phase combination determination method driven by both the model and the real data. The new method makes full use of triple-frequency code measurements (especially the low-noise of the code on the B3 signal) to minimize the total noise level and achieve the largest AR success rate (model-driven) under different ionosphere residual situations (data-driven), thus speeding up the AR by directly rounding. With the triple-frequency Beidou Navigation Satellite System (BDS) data collected at five stations from a continuously-operating reference station network in Guangdong Province of China, different testing scenarios are defined (a medium baseline, whose distance is between 20 km and 50 km; a medium-long baseline, whose distance is between 50 km and 100 km; and a long baseline, whose distance is larger than 100 km). The efficiency of the optimal code-phase combination on the AR success rate was compared with that of the geometry-free and ionosphere-free (GIF) combination and the Hatch-Melbourne-Wübbena (HMW) combination. Results show that the optimal combinations can always achieve better results than the HMW combination with B2 and B3 signals, especially when the satellite elevation angle is larger than 45◦. For the wide-lane AR which aims to obtain decimeter-level kinematic positioning service, the standard deviation (STD) of ambiguity residuals for the suboptimal combination are only about 0.2 cycles, and the AR success rate by directly rounding can be up to 99%. Compared with the HMW combinations using B1 and B2 signals and using B1 and B3 signals, the suboptimal combination achieves the best results in all baselines, with an overall improvement of about 40% and 20%, respectively. Additionally, the STD difference between the optimal and the GIF code-phase combinations decreases as the baseline length increases. This indicates that the GIF combination is more suitable for long baselines. The proposed optimal code-phase combination determination method can be applied to other multi-frequency global navigation satellite systems, such as new-generation BDS, Galileo, and modernized GPS.
منابع مشابه
Instantaneous Real-Time Kinematic Decimeter-Level Positioning with BeiDou Triple-Frequency Signals over Medium Baselines
Many applications, such as marine navigation, land vehicles location, etc., require real time precise positioning under medium or long baseline conditions. In this contribution, we develop a model of real-time kinematic decimeter-level positioning with BeiDou Navigation Satellite System (BDS) triple-frequency signals over medium distances. The ambiguities of two extra-wide-lane (EWL) combinatio...
متن کاملBDS code bias periodical mitigation by low-pass filtering and its applications in precise positioning
The code-phase divergences, which are minimal for GPS, GLONASS, and Galileo satellites, are commonly found in BeiDou Navigation Satellite System (BDS) Geostationary Orbit (GEO), Inclined GeoSynchronous Orbit (IGSO) and Medium Earth Orbit (MEO) satellites. Several precise positioning applications which use code observations are severely affected by these code biases. We present an analysis of co...
متن کاملA New GNSS Single-Epoch Ambiguity Resolution Method Based on Triple-Frequency Signals
Fast and reliable ambiguity resolution (AR) has been a continuing challenge for real-time precise positioning based on dual-frequency Global Navigation Satellite Systems (GNSS) carrier phase observation. New GNSS systems (i.e., GPS modernization, BDS (BeiDou Navigation Satellite System), GLONASS (Global Navigation Satellite System), and Galileo) will provide multiple-frequency signals. The GNSS...
متن کاملReal-time Cycle Slip Detection and Repair for Network Multi-GNSS, Multi-frequency data processing
The GNSS community is experiencing a new era with the development of the multi-GNSS and multi-frequency industry. For high-precision GNSS data processing with the use of carrier phase measurements, quality control steps, such as, cycle slip detection and repair, are essential. With the correct detection and repair of the cycle slips, the carrier phase measurements will not be lumped by the unkn...
متن کاملMitigating BeiDou Satellite-Induced Code Bias: Taking into Account the Stochastic Model of Corrections
The BeiDou satellite-induced code biases have been confirmed to be orbit type-, frequency-, and elevation-dependent. Such code-phase divergences (code bias variations) severely affect absolute precise applications which use code measurements. To reduce their adverse effects, an improved correction model is proposed in this paper. Different from the model proposed by Wanninger and Beer (2015), m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 10 شماره
صفحات -
تاریخ انتشار 2018